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BY 
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A B S T R A C T  

A complete axiom system for the weak monadic second order theory of two 
successor functions, W2S, is presented. The axiom system consists, roughly, of 
the generalized Peano axioms and of an inductive definition of the finite sets. 
For the proof, methods of J. R. Buchi and J. Doner are used to obtain a new 
decision procedure for W2S, whose proofs are easily formalized. Different 
finiteness axioms are discussed. 

O. Introduction 

Let W2S be the weak monadic  second order  theory of two successor functions,  

i.e. the theory of the full binary tree which allows quantification over  both 

e lements  and finite subsets of  the tree. D o n e r  [4], and independent ly  though 

somewhat  later Tha tche r -Wr igh t  [9], have shown that W2S is decidable.  W2S is 

thus trivially axiomatizable by its true sentences. It is not just for aesthetical 

reasons, however ,  that this paper  presents  a " n e a t "  axiom system for W2S. 

When  working with monadic  second  order  theories one  actually works  with 

f ragments  of set theory.  Thus  there  is no absolute frame of monadic  second 

order  logic, and it is quest ionable whether  there is such a f rame even for only the 

decidable monadic  second order  theories.  Therefore  when proving the decidabil- 

ity of a monadic  second order  theory,  one  should specify what part of set theory 

one needs for the proof.  (Compare  Buchi-Siefkes  [31. ) The  situation is less 

uncertain in the case of a weak monadic  second order  theory.  Still there are 
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different definitions of infinity, some of which are equivalent only by the axiom 

of choice. So one should find out which definition(s) one is using. 

In case of a decidable theory, to reveal the very content of the theory one has 

to formalize the decision procedure,  and under the way to collect all principles 

one needs for deciding. The result for W2S is a complete axiom system which 

consists of three parts: (i) Axioms for the elementary logic of this language. (ii) 

Axioms for the two successor functions, which are generalizations of the Peano 

axioms for one successor. (iii) Axioms characterizing the finite sets as an 

inductive structure generated from the empty set by the operation of adjoining 

an element. In other words, one gets exactly the finite sets by repeatedly adding 

single elements, starting from the empty set. This definition, however, is 

inductive and not explicit, since " repeatedly"  means "finitely often".  

As usual with monadic second order theories, Doner 's  decison procedure for 

W2S involves finite automata - -  tree automata in this case. It is his discovery 

that one has to have tree automata working backwards, from the branches to the 

root, in order to make deterministic automata useful. The same concept appears 

independently in Thatcher-Wright  [9} and in Magidor-Moran [5]. The latter 

paper, however, is the only place where the problem is discussed explicitly: 

Magidor-Moran define "climbing" and "sinking" tree automata, and give an 

example of a finite (in fact, two-element) set of trees which is not definable by a 

climbing deterministic automaton. 

The automata notions are easily formalized for our completeness proof. 

Doner 's  main proof tool, however, tree induction, cannot be expressed in the 

language of W2S; so we cannot formalize his proof. Instead of tree induction we 

use two other principles, induction for frontiered trees (see definition in section 

3) and bar induction, the latter well known in intuitionistic mathematics. All 

these principles base on the fact that one can define the frontiered trees 

inductively: one gets exactly the frontiered trees by starting with the trivial root 

tree and adding repeatedly pairs {x0, x 1} of successors. Using these ideas we give 

a new decision procedure for W2S, which uses Doner 's  backward automata, but 

resembles in structure exactly the decision procedures for the weak and the 

strong monadic second order theory of one successor of Buchi [1] and [2], as 

presented in [8]. Thus in W2S we have a new case of the connection between 

monadic second order theories and finite automata, a connection which has 

proven to be stimulating in both directions. 

I express my thanks to J. R. Buchi who greatly influenced this work and its 

presentation; some of his ideas can be found in this introduction. I also wish to 

thank J. Doner  for many helpful discussions on the subject. I thank G. H. Mhller 
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who originated and stimulated my interest in monadic second order theories. 

And I thank M. O. Rabin who introduced me into the problems of the binary 

tree. 

1. The binary tree and the system W2S 

Let T2 be the set of all finite sequences of O's and l's. T2 can best be pictured as 

the full binary tree, where the root represents the empty sequence e, and each 

element x has two successors, x0 and x l  (Fig. 1). 

e 

Fig. 1 

The language to describe T2 consists of individual variables t, u , . . . ,  z, set 

variables U, V,. �9 Z, the equality sign = ,  two unary function symbols s, and s~, 

and an individual constant e. Prime formulae are of the form Xz, x = y, and 

X = Y. Arbitrary formulae are built up from prime formulae using sentential 

connectives and quantifiers for both types of variables. The interpretation of the 

formulae is suggested by the notation: individual variables range over the 

elements of T2, set variables range over  finite subsets of T2, so Xz means "z  is 

an element of X" ,  the constant e denotes the root of the tree, and the two 

function symbols are used for the two successor functions. We stipulate that a 

sentence is true itI it is true in T2 under this interpretation, and call the resulting 

system ( =  interpreted theory) W2S, Weak monadic second order theory of 2 

Successors. This name is adapted from Rabin's $2S for the corresponding strong 

monadic second order  theory of [61. For the rest of the paper "se t"  will normally 

mean "finite subset of T2". 

In formulae of W2S we will use the following notation: We will write x0 and 

x 1 instead of So(X) and sl(x) respectively, especially 0 and 1 for so(e) and s,(e). 
Also we will often write z E X instead of Xz, and we will use freely the usual 

set-theoretical notation, e.g. z ,~ X LJ {y} stands for -~[Xz v z = y]. Similarly, 

sets and functions of elements or subsets of T2 will be defined by comprehension; 

it should be kept in mind that thus defined terms are used only as abbreviations 

for expressions of the formal language. We will use Greek capital letters to 

denote  formulae of W2S. The symbol -- will denote literal equality of formulae 

in defining abbreviations. 
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2. The axiom system 

The purpose of this paper is to show that the following three sets of axioms 

together constitute a complete axiom system (for derivability) for W2S, i.e. 

exactly the true sentences of W2S are derivable from this axiom system. 

Part A 

An arbitrary axiom system for the elementary logic of W2S, regarded for the 

moment as a two-sorted elementary theory. Here we add further two equality 

axioms: 

(LEIBNIZ EQUALITY)  

(EXTENSIONALITY) 

( v z ) [ z x  --, Z y ] - - ,  x = y, 

( V z ) [ X z  ,--, Y z ] - ,  x = r .  

Part B 

Generalized Peano axioms for the two successor functions: 

(OE1) x 0 ~  e 1 (the root has no predecessors), 
(OE2) x 1 ~ e J 
(SE1) x0 = y0---* x = y "] 

(SE2) x 1 = y 1--* x = Y I (branches do not merge), 

(SE3) x0 ~ y 1 

(m) r 

(induction schema for elements of the tree). 

Part C 

Axioms for finite subsets of the tree: 

(OS) ( 3 X ) X  = 0 (existence of the empty set), 

( ss )  ( v x ) ( v y ) ( ~ z ) z  = x u {y} 

(the union of a set with a singleton is a set), 

(IS) 0 ( 0 )  ^ (VZ)(V x)[O(Z)-- ,  O(Z U {x})] ~ (VZ)r  

(induction schema for subsets of the tree). 

REMARKS. The axiom system of part A consists of axioms for a two-sorted 

first order predicate calculus restricted to our language. An example of such an 

axiom system may be found on p. 4/5 of the author's [8], if one (i) changes the 

substitution rule (SP) for predicate variables into a rule for changing free set 

variables, and (ii) adds the usual equality axioms which make = a congruence 

relation. (SP) must be deleted, since it is equivalent to the full comprehension 
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principle, and thus is false in W2S. We will instead derive the comprehension 

principle restricted to finite sets. There seems to be no finiteness definition in 

W2S which would allow us to replace part C by this restricted comprehension 

principle and the axiom that all sets are finite. (See the discussion following 

Proposition 3.6.) 

If we had not included equality as a primitive notion, we could define it as 

usual: 
x = y *--, ( V Z ) [ Z x  ,,-, Zy],  

X = Y~-~(Vz ) [Xz  *-~ Yz]. 

These two equivalences are derivable from part A, and have to be used to get the 

formal counterparts for the axioms of part C. 

MAIN THEOREM. Exactly the true sentences of W 2 S  are derivable from the 

above axioms. 

It is easy to see that all the axioms are true in W2S. It remains to show that the 

axioms are complete, i.e. that all true sentences are derivable. To prove this we 

will (i) describe a decison procedure by which any sentence of W2S is 

transformed into an equivalent truth value, and (ii) show at the same time that 

the equivalences in the single steps of  the procedure are derivable. The axioms 

are thus complete in an effective sense: for any true sentence of W2S, we can find 

effectively a derivation. 

3. Basic properties of the tree 

We will try to get some insight into the basic structure of 7"2, which will prove 

valuable later in the decision procedure. For the rest of the paper, in all 

lemmata, propositions and theorems, the reader should add the phrase "The  

following is derivable from the axioms". Normally, however, the proofs will be 

given in a half-formal way, only indicating how a derivation could be built up. 

We start by deriving two versions of the comprehension principle for finite 

sets, stating that definable parts of sets are sets. 

PROPOSITION 3.1. 

(COMPs.) (3W)(Vx)[OP(x)---* W x ] - - , ( 3 U ) ( V x ) [ U x  ~-*~(x)], 

(COMP*,) ( 3 U ) ( V x ) [ U x  ~ Wx ^ qb(x)]. 

PROOF. It is easy to derive the equivalence of the two forms. We will derive 

(COMP*,): Let 



Vol. 30, 1978 MONADIC SECOND ORDER THEORY 269 

u ) ( V x ) t U x  .- ,  Wx ^ 
df 

We will show ( V W ) 4 ' ( W )  with the help of the set induction schema (IS). 4 ' (0)  

means actually 

0 /Y) [ (Vx)  ~ Yx ~ 4'(g)l .  

Now by predicate logic we have 

(Vx ) - -1Yx  ^ (Vx)--7 Ux ---~(Vx)[Ux ~ Vx A r 

and thus 

OIx ) ~ Yx ^ (::I U) (Vx  ) ~ Ux --* (:IU)(Vx )[ Ux o Yx A r 

Axiom (OS) yields 

( V x ) ~ Y x - - * 4 , ( Y ) ,  i.e. 4,(0). 

4'(W U {z}) fs correctly expressed as 

( V Y ) { ( V u ) [ Y u  ~-~u = z v Wz]---~4'(Y)}. 

Then 4'(W)--* 4'(W kJ {z}) is derived by similar steps, which yields OIW)4 ' (W)  

by (IS). Q.E.D. 

It is most important for our purpose that the natural partial order of T2 be 

definable in W2S. 

DEFINITIONS. 

1) Trans (U)~d t (Vz ) [UzOv  Uzl---~ Uz]; U is transitive, i.e. closed under 
predecessor. 

2) x _-< y -=df(VU)[Trans(U) ^ Uy ---, Ux]. 

3) x<y------deX----<y^x#y. 
4) X -- y --dfX------y V y --< X, X and y are comparable. 

PROPOSmON 3.2. <= and < are the natural partial orderings of T2 induced by 

the successor functions, i.e. 

(a) x =< x, 

(b) x<=y A y < = z ~ x < - z ,  

(c) <x,  
(d) x < y ^ y <z - -*  x < z ,  

(e) x < y ----~ y ;~ x, 

(0 x < - y  A y < - x ~ x = Y ,  

(g) e _-< x, 
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(h) x < x O ^ x  < x l ,  

(i) x<y---~xO<=yvxl<=y, 

(j) x 0 = < y ^ x l < = z ~ y ~ z .  

The proof consists of a long chain of lemmata, which we will not give here. 

The interested reader should note that (e) is best derived before (d) and (f). It 

should be remarked that Proposition 3.2 is a consequence of the axioms of parts 

A and B alone, together with (COMPs,). 

The following definitions concern subsets of T2. The terminology is partially 

taken from Doner [4] and Rabin [6]. Since in W2S we deal only with finite sets, 

however, the definitions of "frontier" and "frontiered tree" are different from 

Rabin's definitions for $2S, although the notions are the same; the notion of 

"path"  is weaker than in $2S. Doner, on the other hand, calls "frontier" what we 

call "border";  so not every frontier in Doner 's  sense is a frontier in our sense. 

D EFINITIONS. 

1) T~ =~,{y;x-----y}: the tree with root x. 

2) Px =d,{y;y =<x}: the path up to x. 

3) CI(U)=df{x;(::ly =>x)Uy}: the transitive closure of U. 

4) Br(U)=d,{x E U;xO ~ C I ( U )  v x lJ~CI(U)}:  the border of U. 

5) Br*(U) =d,{x ~CI(U) ;  (Vy < x)y E CI(U)}: the outer border of U. 

6) U § =~fCI(U)UBr*(U): the outer closure of U. 

7) U - = d , U - B r ( U ) :  the interior of U. 

8) F r ( U ) = - d f ( V z ) ( 3 y E U ) y - z  n(Vy, z E U ) [ z - y - - - ~ z = y ] :  U is a 
frontier. 

9) FrTr(U)-=~tTrans(U) ^ Fr(Br(U)):  U is a fro^tiered tree. 

10) Fin(U)=-d,(3W)[Fr(W) n U _CCI(W)]: U is finite. 

11) Path(U)-=--d~U~O^Trans(U) ^ ( V z ) [ U z O - - ~  Uzl]:  U is a path. 

It should be remarked once more that definitions 1-11 are mere abbreviations, 

e.g. y E Tx means formally just x =< y ; but T~ is not a set of our model. We will 

use notation like U E Trans instead of Trans(U).  

An example might illustrate these definitions (Fig. 2). 

Fig. 2 
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Here the following sets occur: 

�9 U = {10,11},  

C ) , � 9  CI(U)  = {e, 1, 10, 11}, 

[] Br(CI(U))  = {e, 10, 11}, 
�9 Br+(U) = {0, 100, 101,110, 111}. 

The reader will more easily understand the proofs of this paper if he draws 

similar pictures. 
Up to now we know only that the empty set exists; we will show now that there 

are a lot more sets. 

PROPOSITION 3.3. Existence of sets: 

(a) 0 / x ) ( 3 U )  U = {x} (singleton), 

(b) O l x ) ( 3 U )  U = Px (path), 

(c) 0 /W)( : IU)  U = Br(W)  (border), 

(d) 0/V, W ) ( 3 U )  U = V tq W (intersection), 

(e) OtV, W ) ( 3 U )  U =  V td W (union), 

(f) 0 / W ) ( 3 U )  U = CI(W) (closure), 

(g) ( V W ) ( 3 U )  U = Br+(W) (outer border), 

(h) ~ W ) ( 3 U )  U = W § (outer closure), 

(i) 0 / W ) ( 3 U )  U = W -  (interior). 

PROOF. We get (a) by combining (OS) and (SS). Using the formula 

~,(x)  - ( 3 u ) u  = Ix,  
df 

we prove (b) by (IE), using (a) and (SS). (c), (d), and (i) are instances of 

(COMPs,). Set induction (IS) on the formula 

, v ( w )  =- ( v v ) o u ) u  = v o w 
Of 

gives (e) with the help of (SS). (f) follows from (b) and (e) by (IS), if we note that 

Cl(U u {x}) = El(U)  u e~. 

We cannot yet prove (g); a proof follows from Proposition 3.4(a) together with 

(a), (e), and (COMPs,). (h) finally is a direct consequence of (f), (g), and (e). 
Q.E.D. 

The next proposition provides two other induction schemata for sets: 
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PROPOSITION 3.4. (a) Induction ]:or transitive sets: 

*(O) A ~({e})^ 0i U E Trans)~x E U)[*(U)---, 

~ ( U  U {x0}) ^ ~ ( U  U {x 1})] ~ (VU E Trans)*(U). 

(b) Induction for #ontiered trees: 

~({e }) ̂  (V U E FrTr) 0r E U) [~(U)  ~ * ( U  U{x 0, x 1})] ~ (V U E FrTr)~(U). 

PROOF. (a) Let the hypothesis be given, define 

g,(U) ~, q,(Cl(U)). 

We will show OtU)@(U) by set induction (IS). Since for transitive U, U = 

CI(U), we get the wanted conclusion 

(V U E Trans)~(U). 

C1(0) = 0 ,  therefore @(0) holds. Let U be given such that ~(U).  We will show 

O/x)g/(U U{x}) by induction (IE). Start with x = e: 

Case 1. U = O. Then U U{e} = {e} = Cl ({e }), thus @(U U {e }) follows from 

q~({e}). 

Case 2. U #  0 .  Then e E CI(U), therefore CI(U U {e}) = CI(U), which 
together with 4,(U) implies ~b(U U{e}). 

Now let @(U U {x}) be proven; we have to show 

,/,(u u{xo}) ^ V,(u u{xl}). 

Since 

Trans(Cl(U U {x})) ^ x E CI(U U {x}) A ~(CI(U U {x})), 

we get from the hypothesis of the proposition 

,V(CI(U U {x}) O {xO}). 

But 

Cl(U u {x}) u {x0} = Cl(U u {x 0}), 

which implies $ ( U  U {x0}). Analogously we get @(U O {x 1}). 

(b) Use $ ( U )  ~ df(l,(U +) to prove (V U)ep(U § by (IS) similarly as in (a). Let W 

be a frontiered tree, and let U = W-. By Proposition 3.5(0) below, U § W, 
which proves ~(W).  Q.E.D. 

Now we can get more insight into the notions defined above. 
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PROPOSITION 3.5. 

(a) Path (P~), 

(b) [ y ~ P x ^ y ~ x - - ~ y O E P x v  y l E P x ] ,  

(c) Paths are well-ordered, 

(d) B r ( U ) =  U n Br(CI(U)),  Br+(CI(U))= Bf l (U) ,  (CI(U)) § U*, 

(e) Trans(U+), 

(f) x E U---~(3y ~ Br(U))  x =<y, . 

(g) FrTr( U)---~ [ UxO *-~ Ux l ], 

(h) W C_ U ~ B r * ( W ) C _ B r ' ( U ) U C I ( U ) ,  

(i) B r ( U  § = Br+(U), 

(j) Fr(Br+(U)), 

(k) FrTr (U*), 

(1) (U*)- = CI(U),  

(m) Trans(U)  <--~ U = (U*)-,  

(n) FrTr (U)  <-~Trans(U-) ^ B r ( U )  = Br+(U-), 

(o) F r T r ( U ) o  U = (U- ) ' .  

PROOf. (a), (b), and (c) follow easily from Proposition 3.2. (d) follows directly 

from the definitions. (e), (g), and (h) are easy. To prove (f) let x E U be given. 

Let W = d~U n (% - {x}). Then Br (W)  = B r ( U ) A  (Tx -{x}).  

Case 1. W = O .  Then x ~ B r ( U ) .  

Case 2. W J  0 .  It is easy to prove by set induction that 

V J  0--0 Br(V) ,~  0 .  

So let y E Br(W).  Then y ~ Br(U) ,  and x < y. 

Let us prove (i). x E CI(U)  implies that 

[ x0E  CI(U)  v x0 E Br+(U)] ^ [xl ~ C I ( U ) v  x l  ~ Br*(U)] 

and thus 

xOE U~^  x l  ~ U § 

On the other hand, x ~ Br(U*)  implies by (e) and by definition 

x O ~ U * v x l ~ . U * .  

Therefore, x ~ B r ( U  ") implies x ~ C I ( U ) ,  and trivially, x U U § thus x E 

Br*(U). Conversely, let x E Br+(U). Then x E U*. It remains to show 

x O ~ U * v x l ~ _ U  § 
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Assume x 0 ~  U*: 

Case 1. xO ~ CI(U). Then x E CI(U), thus x ~ Br ' (U) ,  contradiction. 

Case 2. xO E Br*(U). Then x E CI(U), again contradiction. Thus x0 ~ U +. 

To prove (j), use Proposition 3.4(a), induction for transitive sets: Br*(O) = {e}, 

Br+({e}) = {0, 1}; thus the induction beginning is easy. Now let U be transitive, 

let x E U, suppose Fr(Br*(U)) as induction hypothesis. We have to show 

Fr(Br+(U t^ {x0})) ^ Fr(Br*(U U {x 1})). 

Case 1. x O ~ U .  Then U U { x 0 } = U .  

Case 2. xO g_ U. Then x E B r ( U )  ^ x 0 ~ B r * ( U ) .  Thus 

Br ' (U  LI {x0}) = (Br*(U)-  {x0}) t^ {x00, x01}. 

Let y, z E Br§ O {x0}), y ~ z. To show: y;Z z. If y, z E Br+(U), then y ~  z by 

induction hypothesis. If y = x00, z = x01, or conversely, then y ~  z. If, say, 

y E Br*(U)-{x0},  z = x00, then y ~  x0, thus y ~  z. This proves the second 

clause in the definition of a frontier. To get the first clause, let y be given, let z 

be such that z E Br ' (U)  A y -- Z (by induction hypothesis). We have to show 

(::lz E Br+(U t^ {x0})) y - z. 

If z = x0, then x 0 0 -  y v x 0 1 -  y. If z,~ x0, then z E Br+(U U{x0}). Thus we 

have shown 

Fr(Br+(U U {x0})). 

The proof for x 1 is analogous. Thus we have proved (j) for transitive sets which 

by (d) is enough. (k) follows from (e), (i), and (j). To prove (i) note that 

(U+) - = U §  § U §  CI(U) 

by (i) and definition. (m) is a direct consequence of (1), since 

Trans(U) ~ U = CI(U). 

For (n) let FrTr(U).  The transitivity of U- follows easily from (f). So let 

x ~ Br+(U-), thus x ~ U- ^ 0/Y < x) y ~ U-. Since Fr(Br(U)), there is z 

Br(U)  such that x -  z. If z < x  were true, then z E U-, which contradicts 

z ~ B r ( U ) .  Thus x =< z, and therefore by the transitivity of U,x  E U. Since 

x g U-, we have x E Br(U).  Thus 

Br*(U -) C Br(U).  

The converse inclusion is proved similarly. Now let conversely 
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Trans (U- )  ^ B r ( U )  = Br+(U-). This implies easily the transitivity of U, whereas 

F r (Br (U) )  follows directly from (j). 

For (o) again let FrTr(U) :  

(U- )  + = CI (U- )  U B r ' ( U - )  = U-  U B r ( U )  = U 

by (n). The converse direction follows from (k). Q.E.D. 

PROPOSITIOIq 3.6. Finiteness principles (two others are to be [ound in Proposi- 

tion 3.50) (j) and (k)). 
(a) ( '4U fi Path)(3x)  U = Px: every path has a maximum. 

(b) ( ' r  every set is finite. 

(c) 0 / U  fi F r ) [ U  = {e} v (3x)[UxO ^ Ux 1]]: every frontier has localmaxima. 

PROOF. (a) and (b) are easily proven by Proposition 3.4(a), induction for 

transitive sets, on the formulae 

Pa th (U) - -* (3x )  U =  Px 

and Fin(U) ,  respectively. 

(c) is trivial with help of induction for frontiered trees, Proposition 3.4(b). 
Q.E.D. 

It is easy to see that all five finiteness principles of Proposition 3.6 would be  

false in the strong monadic second order theory of two successors, Rabin's $2S, 

i.e. they don't  hold in the tree with arbitrary subsets. But some of them are true 

in intermediate structures which have some infinite sets. Indeed, call a path U 

in]inite itI 

call a set W thin itt 

O/x E U)[UxO v Uxl], 

0/U)[Infinite path (U)---, (By E U ) W  n U o T, = 0]. 

All finite sets are thin, but so is e.g. the comb, i.e. the set {0"1; n < co}. 

Now, in the structure which admits all thin sets but no other ones, Proposition 

3.50) and (k) and Proposition 3.6(a) and (b) are true, but Proposition 3.6(c) is 

false. This shows that the following self-suggesting axiom system is not complete: 

Axioms parts A and B, together with (COMPn,) and the finiteness axiom 

Proposition 3.6(b). (In the case of one successor function, the analogous axiom 

system is complete, since there the finite sets are uniquely defined as the 

bounded sets. See [8], pp. 117 ff.) The thin sets are not nice anyway, since the 

closure of a thin set need not be thin, and thus Proposition 3.3(f) and (h) are 
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false. But if we enlarge the structure under considerahon by taking the closure of 

sets, Proposition 3.6(a) becomes false, too, whereas the three other principles 

remain true. It might be that the above axiom system becomes complete if we 

add (a) and (c) as axioms (or just (c)?). We did not, however, investigate this 

question. 

The stronger theory $2S is more powerful here. In $2S, a path is what we 

called above an infinite path (see Rabin [6]). And a frontier is then defined as a 

set which meets every path in exactly one point. With this concept of a frontier, 

the definition of a finite set as a set bounded by a frontier works properly. But in 

W2S, where infinite paths are not available, "finite" does not mean "bounded",  

but "built up point by point". 

As an application of the finiteness principles we prove now two lemmata 

which we will need later in the decision procedure: 

LEMMA 3.7. 

(3x)CD(x)<--)(3W)[We ^ (Vx E W)["~ WxO ^ ~ Wxl- - ,a , (x )]] .  

PROOF. --*: Let ~(x)  be true. It is easy to see that W = Px satisfies the 

lemma. 

<--: Let W have the stated properties, e E W implies that eJ~Br*(W). 

Therefore, by Proposition 3.50) and Proposition 3.6(c), there is an x such that 

x0 E Br+(W) ^ x 1 ~ Br§ 

Thus ~(x)  holds. Q.E.D. 

Different forms of the induction principle for elements are easy consequences 

of Proposition 3.2, e.g. the minimum principle, stating that every set has a 

minimal element (it can have more than one, of course), or the maximum 

principle for subsets of a path. The following induction principle is different, and 

will be useful for the handling of tree automata. It is a special form of bar 

induction, used in intuitionistic mathematics, and is a consequence of the 

finiteness principle of Proposition 3.6(c): 

LEMMA 3.8. Bar induction: 

Trans(U) A COx E Br§ a COx E U)[~(x0)  a ~(x 1 ) ~  ~(x)] 

(Vx ~ u~)~(x). 

PROOf. Let U, �9 satisfy the hypothesis of the lemma. By (COMPn.), there is 

a set W such that 
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( V x ) [ W x  ~ Ux ^ ~ r 

Assume W ~  O. By Proposition 3.6(c) there exists x such that 

x 0 E  B f ( W )  ^ x l  ~ Br*(W), 

and thus 

x ~ W ,  xO~_W, x l ~ W .  

Since W _C U, and U is transitive, by Proposition 3.5(h) we have 

Br*(W) _C Br+(U) I_1 U, 

therefore 

xO, x l  ~ B f ( U ) U  U. 

If x0 E Br*(U), then by hypothesis qb(x0) holds. If x0 E Br+(U), then x0 E U, 

and therefore again @(x0) holds (by definition of W, since x0 ~ W). Analo- 

gously one gets @(x 1), and therefore by hypothesis ~(x).  But this implies that 

x ~ W, contradiction. Q.E.D. 

4. Tree automata, recursion and normal forms 

Let ~,  be the set of all n-tuples of truth values T, F. Our definition of tree 

automata is about the same as Doner's [4], but we choose both, the set of states 

and the input alphabet, among the E, 's .  Our terminology is partially that of 

Rabin [61. 

DEFINITIONS. 

1) A E,-tree is a function from a finite transitive subset of T2 into ~,. 

2) A deterministic tree automaton over the alphabet ~,  is a quadruple 

92 = (~k, s0, J ,K) ,  where ~ is the set of states, s,,E ~k is the initial state, 

J:  E, • Ek • ~k --* Ek is the transition [unction, and K _C ~k is the set of final 

states. The run of ~1[ over the Zn-tree X: U---~E, as input is the Ek-tree 

Z :  U+---~Ek defined by 

(Vt E Br ' (U) )Z t  = s,, ^ (Vt ~ U)Zt  = J(Xt,  ZtO, Z t l ) .  

We write Z = rn (~l, X).  92 accepts X iff Ze E K. 

3) Similarly, a nondeterministic tree automaton over 7;-, is 9][ = (.~k,/, L, K), 

where IC_Ek is the set of initial states, and L_CE.  xEk • xEk is the 
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transition relation. A run of 92 over the E,- tree X: U---*~, is any Y-,~-tree 

Z :  U § ~ Ek satisfying 

Olt E Br+(U))Zt E I ^ (Vt E U)(Xt, Zt, ZtO, Z t l )  ~ L. 

We write Z E Rn (92, X). 92 accepts X itt there exists a run Z of 9.1 over X such 

that Ze E K. 

4) A set of En-trees is automaton definable iff there is a tree automaton over EM 

which accepts exactly the trees of the set. 

Thus, tree automata are generalized in the natural way from the case of one 

successor. There is, however, one striking difference: Tree automata run down 

the tree, i.e. they start reading the input tree at its border and end up at the root. 

(For this reason they ha'ce to be 0-shift automata, i.e. the state at " t ime" t 

depends on the input at the same "t ime",  whereas in the 1-shift automata of the 

linear case the state at time t depends on the input at the previous time.) The 

reason is that upward deterministic tree automata are rather weak, since at any 

point they carry the same information to both successors. (For an example, see 

Magidor-Moran [5], end of section 1.) It was for this reason that Doner [4], 

Magidor-Moran [5], and Thatcher-Wright [9] invented downward automata. 

(As a matter of fact, nonaeterministic tree automata do not prefer a direction; 

we think of them as running downwards just for analogy.) 
Tree automata share with ordinary automata the following facts, which we 

shall use: to any nondeterministic automaton there is an equivalent deterministic 

one; the automaton definable sets form a Boolean algebra; the emptiness 

problem is solvable. For more information about tree automata see Doner [4], 

Magidor-Moran [5], Thatcher-Wright [9], and Rabin [6]. 

As remarked in the introduction, the decison procedure for W2S presented 

here will follow closely the decision procedure for the Sequential Calculus SC of 

Buchi [2], as discussed by the author in [8]. The presentation here will be 

self-contained, but we will refer to [8] for proofs and for explanation of the 

methods used. 
We identify E,-trees with n-tuples of finite subsets of T2 (monadic predicates 

restricted to a common finite transitive set), in a manner analogous to Buchi [1]. 

Thus, we can represent in the language of W2S the conditions specifying a tree 

automaton by propositional formulae involving set variables. We use X, Y, Z, 

sometimes with the upper index n, for n-tuples of set variables, i.e. for E,-trees. 

The letters U, V, W will be used as before for set variables, s, s, will denote 

tuples of truth values, P or pn the tuple consisting of F 's  only. In this way we use 
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formulae of the following three normal forms as tree automata in W2S (for 

details see [8], pp. 25 ff. and 87 ff.): 

DEFINI'nON. Automata normal forms are the following: 

E~: (::lZ). OCt E Br+(U))Zt = So ̂  OCt E U)Zt = J[Xt, ZtO, Ztl] ^ K [Ze 1 

~o: (3Z) .  OCt ~ Br*(U))I[Zt] ^ OCt E U)L[Xt, Zt, ZtO, Ztl] ^ K[Ze] 

~,'~: (A Y ) ( 3 Z ) .  g[Ze] ^ C~t)L[Xt, Yt, Zt, ZtO, Ztl]. 

Here , / ,  K, L are propositional formulae involving at most the indicated prime 

formulae; J is a tuple of propositional formulae. (Ay)  is a string of n -  1 

alternating blocks of set quantifiers where the last one is universal. 

Obviously, a ]~~ or a E~ is true for some X and some 

transitive U if and only if the corresponding deterministic, respectively non- 

deterministic, tree automaton accepts the tree X r U (the function X restricted 

to U). A ~'~-formula corresponds to a nondeterministic automaton working 

(upwards!) on the infinite input X;  X of course is constant outside a finite set. In 

view of this strong connection we will use automata terminology for Eo_ and 

E~ as e.g. Z = r n ( ~ , X r U )  or Z ~ R n ( ~ , X r U )  where �9 it an 

E~-formula or a E~ respectively. 

The decidability proof will consist of three parts, which are the same as in the 

linear case, see e.g. [8], p. 23/24: 

(i) Show that any formula of W2S not containing free individual variables can 

be transformed into the normal form E7 for some n. 

(ii) Show that Y.~'-sentences are decidable. 

(iii) Show that the negation of a ~;'-formula can be transformed into Y.;'-form. 

To prove that 2;'~ is a normal form for W2S, we need the following lemma. The 

idea of the proof is to restrict the consideration to a (finite) transitive set U 

which contains all the sets involved, and to use a set which is "stable" within U 

(see [8], p. 8). It is typical for proofs on E7 to proceed this way. 

LEMMA 4.1. ~ is closed under disjunction. 

PROOF. By Proposition 3.3(e) and (f), 

2 
V {K, [Zie ] A OCt)L, [X~t, Zd, Z~tO, Z~t 1]} 
i--I 

is equivalent to 
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{Ot 2 ( 3 U E T r a n s )  t f ~ U )  A [ ~ Z ,  t A ~ X , t ]  

2 . . . .  } 
^ V [ K , ( e ) A ( V t E  U ) L . ( t ) ^ L , [ F , F , F , F ] ]  . 

1=1 

Using the idea of lemma 7 of Buchi [2], the second half of the matrix of this 

formula is equivalent to 

( 3W) { [We  ^ K,(e)  ^ L,IF, P, P, PI] v [-~ We A Kz(e) 

^ L2[F, F, F, F]} ^ (Vt (E U){[ Wt ,--* WtOl ̂  [ wt ,--, Wt 11 

^ {[Wt A L,(t)l  v ['-'n Wt ^ L~(t)]}}. 

Putting these two equivalences together and using the definition of Trans, one 

sees that the disjunction of two ,X';'-formulae can be written in YT-form. 

Q.E.D.  

THEOREM 4.2. Any  formula not containing free individual variables is equi- 

valent to a "~; ~-formula for a suitable n. 

The proof is the same as for the corresponding theorem l. l .d. l  of [8], pp. 

20-23. We have to use Lemma 3.7 to eliminate conjunctions of existential 

individual quantifications, and the above lemma to reduce the number  of 

disjunctions in the disjunctive normal form. 

To be able to switch back and forth between deterministic and nondeterminis- 
() 

tic automata,  we have to prove that for a X,,-formula to any input there exists a 

unique run. This is implicit in the notation, so in reading the next proposition the 

reader should recall that we prove derivability, not truth. Automaton recursion 

downward the tree bases on bar induction (Lemma 3.8), and thus is a trivial case 

of bar recursion. 

PRoPOSmO.'q 4.3. Bar recursion: For any 2~-formula e~ 

(a) Tra n s(U) ^ Z. = rn (~,  X r U ) ^ Z2 = rn (r X r U ) --, (V x C- U ) [Z, x ,--* Z2x ], 

(b) Trans(U)--- ,  ( 3 Z ) Z  = rn (qb X r U). 

The proof is analogous to the proof of Lemmata  l . l .b. l  + 2, pp. 10-11 of [8]; it 

uses bar induction, Lemma 3.8, and set induction. Proposition 4.3 can be easily 

generalized to more general forms of recursions; we will, however, necd only 

this form. Also we do not state the corresponding proposition on upward 

r e c u r s i o n .  

It is by bar recursion, together with bar induction and induction on frontiered 
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trees, Proposition 3.4, that we avoid Doner 's  tree induction and tree recursion 

([4], p. 409). Doner 's  principles are not expressible in the language of W2S. 

Indeed, even the notion z r w, " the subtree of ~" beginning at w "  (Doner,  l.c.), 

would make W2S undecidable, since it allows one to define concatenation. 

THEOREM 4.4. To any ~,~ there is an equivalent ~,~ 

The proof is essentially the same as in the linear case, cf. theorem 1.2.c.2 on p. 

38 of [8]. Since the run of the ~,~ is constructed by bar recursion, 

Proposition 4.3, the equivalence has to be proved by bar induction, Lemma 3.8. 

COROLLARY 4.5. "2 ~ is closed under Boolean operations. 

PROOF. As in the linear case, using Theorem 4.4 for negation. See e.g. 

[8], p. 34. Q.E.D. 

To derive from Corollary 4.5 our main theorem, that E7 is closed under 

negation, we have to use the fact that Y_,~' is decidable. This follows directly from 

the following construction, which is due to Rabin [7], proof of theor. 23: 

Let qb be a sentence in E~' containing k set quantifiers, 

=- (3Z  k )K[Ze ]  ^ (Yt)L [Zt, ZtO, Z t  1]. 
df  

Define sets Ri _C Ek as follows: 

R0=d,{ff  -* } iff L [ F , F , F ]  holds; otherwise R0=d,Q~. R i + l = d f R i U { s E ~ - k ;  

ex. So, S tE R~ s.t. L[s, so, st] holds}. Since R~ C_ R~+, for all i, there is an m =<2 k 

such that R~ = R,, for all i -> m. Let R =dfUT'-0R~. 

LEMMA 4.6. s E R ~--~(71Z){Zx = s ^ ( V t  ~ T, )L[Z t ,  ZtO, Zt l]} .  

PROOF. Write ~O,(x) short for the right side of the lemma. 

--~: We will show by (metamathematical) induction on i: 

s c R, ~ (Vx)q , , (x ) .  

This is trivial for i = 0 by axiom (OS). So let it be proven for i, let s E Ri+~. Either 

s E R,, then we can use the induction hypothesis. Or else there are so, s, E R, 

such that L[s, So, s,] holds. Let x be given. By the induction hypothesis qJ~(x0) 

and ~0,,(xl) are true. Let Z0 and Z~ be the respective runs. Using Proposition 

3.3(e) and (d), we define a run Z for ~0,(x) by (COMP,,).  For k = 1 and 

s = T(true), the formula defning Z would be 

t E CI(Zo) U CI(Z,) ^ {[xO <- t ^ Zot] v [x 1 <= t ^ Z , t ]  v t = x}. 
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For s = F(false), the clause t = x would be dropped.  For arbitrary k one has to 

use k formulae to define the k components  of Z. 

*--: By Proposition 3.3(e), ~b,(x) implies that there is a transitive set U such 

that x E U  and 

( 3 Z  C U) .  Zx  = s ^ (Vt E T,)L[Zt ,  ZtO, Zt l] .  

So let U be transitve. We will prove by bar induction on 

I/t(X)~ A [ (3Z C U){Zx = s A (~t E T,)L[Zt ,  ZtO, Ztll}---~ s E R ] 
df sE~'k 

that (Vx ~ U+)d/(x). The lemma will follow. 

For x E Br*(U),  ~ (x )  is easily seen to be true. Let x ~ U, s E Ek, let Z be 

such that 

Z C U ^ Zx  = s ^ ( Vt E Tx)L[Zt, ZtO, Zt l] .  

Let so = ZxO, st = Z x l .  Then for j = 0, 1, 

Z C_ U A Zx] = sj A (Vt G T,,)L[Zt, ZtO, Zt l] .  

Thus, so, sl E R by the induction hypothesis. Since L[s, So, sl], we have s E R. 

Q.E.D.  

Since the set R is computable,  we get: 

THEOREM 4.7. 27 is decidable. In fact, for any sentence do in g7 we can 

effectively construct a derivation of either dO or m do. 

Note that Lemma  4.6 implies that all subtrees T, are " isomorphic relative to 

input free au tomata" ,  i.e. 

(1) ( 3 Z ) { Z x  = s ^ (Vt E rx)L [Zt, ZtO, Zt  1]} 

~ (::IZ){Zy = s ^ (Vt E Ty)L[Zt, ZtO, Ztl]) .  

By relativizing the completeness proof for W2S, the " isomorphism relative to 

W2S-sentences" is also derivable, i.e. 

(2) ,--, 

for any formula do(x) containing x as the only free variable and not containing 

the constant e. (Here dott~ is the relativization of all quantifiers in ~ to T,.) Note 

that (2) cannot be extended to formulae containing other free variables, since 

within W2S we cannot map elements or subsets of T, into the corresponding 

elements  or subsets of T,. 
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The known proofs for the decidability of E7 used the fact that, if an automaton 

admits a run at all then it admits a "short"  one (see e.g. Doner [4], p. 413). To 

formalize this proof one needs (1) to cut down a given run which is too long. Also 

one needs a stronger version of Lemma 4.6, which is more cumbersome to 

derive. The recursive character of the construction of Rabin is better suited for 

our inductive proofs. 

We need a further lemma: 

LEMMA 4.8. Fr(U)  A (Vx E U ) ( 3 Z ) { K [ Z x ]  ^ (Vt E T~)L[Zt, ZtO, Ztl]}---~ 

(=IZ){(Vx E U)K[Zx]  ^ (Vt~  U-)L[Zt ,  ZtO, Ztl]}: 

I f  one can start a given automaton on every point of a frontier, then there is a single 

run from which one can get all the separate runs by restrictions. 

PROOF. It is easy to prove by set induction and Proposition 3.3(e) 

(Vx, y ~ U)[x - y ---,x = y l  ^ (Vx ~ U)(3Z){K[Zx] ^ 

^ (Vt G Tx)L[Zt, ZtO, Ztl]}---~(3Z)(Vx E U){K[Zx] A 

^ (vt ~ Tx)L [Zt, ZtO, Zt I]}. 

This directly implies the lemma. Q.E.D. 

THEOREM 4.9. ~7 is closed under Boolean operations. 

PROOF. Conjunction is easy. So let qb(X)E E7 be the formula 

( 3 Z ) .  K[Ze  I ^ (Vt )L[Xt ,  Zt, ZtO, Z t l l .  

By restricting the consideration to Ci(X) as in the proof of Lemma 4.1, we see 

that ~ (X)  is equivalent to 

(VU ~ Trans){(Vt,~ U) -~ X t  ~ ( 3 Z ) { K [  Ze ] 

(1) 

^ (vt  E U)L [Xt, Zt, ZtO, Zt 1] ^ (Vt ~ U)L [P, Zt, ZtO, Zt 11}}. 

Using the formula L [F, Zt, ZtO, Z t l ]  we define the set R as in Lemma 4.6, and 

construct a propositional formula I s.t. I[s] ~ s E R. Then (1) is equivalent to 

(VU e Trans){(Vt ~ U) --1Xt ~ ( 3 Z ) { K [ Z e ]  ^ 

(2) 
^ (v t  e U)L[Xt, Zt, mto, mtl ]  ^ ( V t e  Br+(U))t[Zt]}}. 

Indeed, ( 1 ) ~  (2) is immediate from Lemma 4.6. 

For ( 2 ) ~  (1) use Lemmata 4.6 and 4.8 together with Proposition 3.3(e). The 
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second half of (2) is a E~ qJ,(X, U). Thus by Corollary 4.5 there is a 

]~~ ~2(X, U) equivalent to --1 ~1(X, U). Therefore -'7 ~(X)  is equivalent 

to 

(3 U ~ Trans){(V t,~ U) ---1Xt A ~2(X, U)}, 

which is easily transformed into ET. Q.E.D. 
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